onsdag den 16. oktober 2019

REDOX status påvirker IDO enzym aktivitet

I forrige blogindlæg Forhøjet methæmoglobin og "rod i redox" hos ME patienter lærte vi, at hæmoglobin skal være i ferro (Fe2+) tilstand for at kunne binde ilt.

Enzymet indolamine-2,3-dioxygenase (IDO) binder ligeledes ilt via jern i ferro (Fe2+) form. IDO omsætter aminosyren tryptofan til N-formylkynurenine. IDO sætter to iltatomer (to ilt = di oxygen) ind i indolringen på plads nr. 2 og 3 i tryptofan (1):

Link til figur af den kemiske reaktion (1):

Ligesom hæmoglobin kan auto-oxideres til methæmoglobin i ferri (Fe3+) form, kan IDO auto-oxidere til en inaktiv ferri (Fe3+) form (2):

  • Aktiv ferro indolamine-2,3-dioxygenase:: IDO(Fe2+), kan binde ilt
  • Inaktiv ferri indolamine-2,3-dioxygenase: IDO(Fe3+)

I forrige blogindlæg lærte vi, at cytochrome b5 kan give en elektron til methæmoglobin Hgb(Fe3+), så den aktive iltbindende hæmoglobin Hgb(Fe2+) gendannes.

Cytochrome b5 kan også anvendes til at give en elektron til IDO(Fe3+), således at den aktive IDO(Fe2+) gendannes (3).

Et hold forskere har vist, at ud over cytochrome b5 kan polysulfider eller thiol-molekylet 3-mercaptoindol også anvendes til at regenere IDO enzymet, citat fra reference 2:
"To bind molecular oxygen and activate tryptophan, IDO1 must be in the reduced ferrous state, where it returns in its catalytic cycle without the need for additional reducing equivalents. And yet, if no reductant is supplied during multiple turnovers, IDO1 undergoes abortive autoxidation with loss of superoxide to produce the inactive ferric enzyme. The ferric IDO1 produced in this manner persists even in the reducing environment of cells, suggesting that self-limiting autoxidation is an adaption to prevent excessive activity. Further highlighting the importance of redox regulation in tryptophan metabolism, inactive ferric IDO1 is also prone to long-term inactivation through heme-loss, which likely accounts for the majority of cellular IDO1 found in the apo-form. Regeneration and maintenance of active, ferrous IDO1 in cells has been attributed to cytochrome b5. We sought to explore and understand what other cellular reductants might affect the IDO1 redox switch and, by implication, the immune response. Our initial efforts were motivated by recent work describing the hydrogen sulfide-mediated reduction of myoglobin, hemoglobin, heme oxygenase, and porphyrin complexes. Hydrogen sulfide binds to the ferric heme of these proteins to form a hydrosulfido complex that can then lead to reduction to the ferrous heme and production of sulfhydryl radical, a paradigm matching the requirements for IDO1 activation in cells. The final oxidized products of these reactions, polysulfides, have also gained attention with the discovery of their high, micromolar concentrations within cells and their remarkably versatile reactivity, including ferric heme reduction in cytochrome c."

Hvis hypotesen om ME-IDO-metabolic-trap er sand, kan polysulfider eller 3-mercaptoindol så anvendes til behandling af ME?

Har ME patienter et generelt redox reduktions-potentiale problem?

Læs også:

The IDO Metabolic Trap Hypothesis for the Etiology of ME/CFS


1) Efimov et el. The mechanism of substrate inhibition in human indoleamine 2,3 dioxygenase. J Am Chem Soc. 2012 Feb 15;134(6):3034-41. doi: 10.1021/ja208694g. Epub 2012 Feb 2.https://www.ncbi.nlm.nih.gov/pubmed/22299628

2) Nelp et el: Potent activation of indoleamine 2,3-dioxygenase by polysulfides. J Am Chem Soc. 2019 Sep 25;141(38):15288-15300. doi: 10.1021/jacs.9b07338. Epub 2019 Sep 11. https://www.ncbi.nlm.nih.gov/pubmed/31436417

3) Maghzai et al: Cytochrome b5, not superoxide anion radical, is a major reductant of indoleamine 2,3-dioxygenase in human cells. J Biol Chem. 2008 May 2;283(18):12014-25. doi: 10.1074/jbc.M710266200. Epub 2008 Feb 25. https://www.ncbi.nlm.nih.gov/pubmed/18299324

Ingen kommentarer:

Send en kommentar

Bemærk! Kun medlemmer af denne blog kan sende kommentarer.